In Hammerton & Kerschen (1996), the effect of the nose radius of a body on boundarylayer receptivity was analysed for the case of a symmetric mean flow past a two-dimensional body with a parabolic leading edge. A low Mach number two-dimensional flow was considered. The radius of curvature of the leading edge, r n , enters the theory through a Strouhal number, S = ωr n /U , where ω is the frequency of the unsteady free-stream disturbance and U is the mean flow speed. Numerical results revealed that the variation of receptivity for small S was very different for free-stream acoustic waves propagating parallel to the mean flow and those free-stream waves propagating at an angle to the mean flow. In this paper the small-S asymptotic theory is presented. For free-stream acoustic waves propagating parallel to the symmetric mean flow, the receptivity is found to vary linearly with S, giving a small increase in the amplitude of the receptivity coefficient for small S, compared to the flat plate value. In contrast, for oblique free-stream acoustic waves, the receptivity varies with S 1 2 , leading to a sharp decrease in the amplitude of the receptivity coefficient, relative to the flat plate value. Comparison of the asymptotic theory with numerical results obtained in the earlier paper confirms the asymptotic results but reveals that the numerical results diverge from the asymptotic result for unexpectedly small values of S.