2016
DOI: 10.18860/ca.v4i3.3633
|View full text |Cite
|
Sign up to set email alerts
|

Some Properties from Construction of Finite Projective Planes of Order 2 and 3

Abstract: In combinatorial mathematics, a Steiner system is a type of block design. Specifically, a Steiner system S(t, k, v) is a set of v points and k blocks which satisfy that every t-subset of v-set of points appear in the unique block. It is well-known that a finite projective plane is one examples of Steiner system with t = 2, which consists of a set of points and lines together with an incidence relation between them and order 2 is the smallest order. In this paper, we observe some properties from construction of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 2 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?