2000
DOI: 10.1088/0305-4470/33/27/308
|View full text |Cite
|
Sign up to set email alerts
|

Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant

Abstract: Comparison between the exact value of the spectral zeta function, Z H (1) = 5 −6/5 [3 − 2 cos(π/5)] Γ 2 (1/5)/Γ(3/5), and the results of numeric and WKB calculations supports the conjecture by Bessis that all the eigenvalues of this PTinvariant hamiltonian are real. For one-dimensional Schrödinger operators with complex potentials having a monotonic imaginary part, the eigenfunctions (and the imaginary parts of their logarithmic derivatives) have no real zeros.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

3
83
0
6

Year Published

2001
2001
2024
2024

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 100 publications
(92 citation statements)
references
References 10 publications
3
83
0
6
Order By: Relevance
“…Geometrical optics (ray tracing) is sufficient to reproduce the gamma-function and exponential behaviors in (8). We simply evaluate the approximate WKB integral…”
mentioning
confidence: 99%
See 1 more Smart Citation
“…Geometrical optics (ray tracing) is sufficient to reproduce the gamma-function and exponential behaviors in (8). We simply evaluate the approximate WKB integral…”
mentioning
confidence: 99%
“…This procedure gives the behavior in (8) apart from an overall multiplicative constant. This constant can only be determined by performing a physical-optics calculation of the tunneling rate.…”
mentioning
confidence: 99%
“…Essa relação nada intuitiva foi testada numericamente e analiticamente [12,13] para uma certa classe de teorias desenvolvidas na Ref. [14], todavia, uma prova matemática da mesma pode ser encontrada na Ref.…”
Section: Completezaunclassified
“…Uma maneira intuitiva de entender o que ocorreé lembrar do operador de evolução temporal U descrito pela Eq. (12). Aplicar uma transformação de reversão temporal (t → −t) neste operadoré equivalente a apenas conjugá-lo,…”
Section: Operador T : Reversão Temporalunclassified
See 1 more Smart Citation