Abstract:We develop geometry of affine algebraic varieties in K n over Henselian rank one valued fields K of equicharacteristic zero. Several results are provided including: the projection K n × P m (K ) → K n and blowups of the K -rational points of smooth K -varieties are definably closed maps; a descent property for blowups; curve selection for definable sets; a general version of the Łojasiewicz inequality for continuous definable functions on subsets locally closed in the K -topology; and extending continuous here… Show more
“…2. Stratified-regular maps and functions are thoroughly investigated, in a more restrictive framework, in [4,29,30,44,45,50,52,54,55,58,[60][61][62]66,74,75,84], where they sometimes appear under different names (cf. Remark 2.5).…”
Let V , W be real algebraic varieties (that is, up to isomorphism, real algebraic sets), and X ⊆ V some subset. A map from X into W is said to be regular if it can be extended to a regular map defined on some Zariski locally closed subvariety of V that contains X . Furthermore, a continuous map f : X → W is said to be piecewise-regular if there exists a stratification S of V such that for every stratum S ∈ S the restriction of f to each connected component of X ∩ S is a regular map. By a stratification of V we mean a finite collection of pairwise disjoint Zariski locally closed subvarieties whose union is equal to V . Assuming that the subset X of V is compact, we prove that every continuous map from X into a Grassmann variety or a unit sphere can be approximated by piecewise-regular maps. As an application, we obtain a variant of the algebraization theorem for topological vector bundles. If the variety V is compact and nonsingular, we prove that each continuous map from V into a unit sphere is homotopic to a piecewise-regular map of class C k , where k is an arbitrary nonnegative integer.
Mathematics Subject Classification 14P05 · 14P99 · 57R22Communicated by Ngaiming Mok.
“…2. Stratified-regular maps and functions are thoroughly investigated, in a more restrictive framework, in [4,29,30,44,45,50,52,54,55,58,[60][61][62]66,74,75,84], where they sometimes appear under different names (cf. Remark 2.5).…”
Let V , W be real algebraic varieties (that is, up to isomorphism, real algebraic sets), and X ⊆ V some subset. A map from X into W is said to be regular if it can be extended to a regular map defined on some Zariski locally closed subvariety of V that contains X . Furthermore, a continuous map f : X → W is said to be piecewise-regular if there exists a stratification S of V such that for every stratum S ∈ S the restriction of f to each connected component of X ∩ S is a regular map. By a stratification of V we mean a finite collection of pairwise disjoint Zariski locally closed subvarieties whose union is equal to V . Assuming that the subset X of V is compact, we prove that every continuous map from X into a Grassmann variety or a unit sphere can be approximated by piecewise-regular maps. As an application, we obtain a variant of the algebraization theorem for topological vector bundles. If the variety V is compact and nonsingular, we prove that each continuous map from V into a unit sphere is homotopic to a piecewise-regular map of class C k , where k is an arbitrary nonnegative integer.
Mathematics Subject Classification 14P05 · 14P99 · 57R22Communicated by Ngaiming Mok.
“…Then the function g • f : R n → R l is also k-regulous (cf. [2,Corollary 4.14] and [5,Corollary 11.7]).…”
Section: Regulous Functions and Their Basic Propertiesmentioning
confidence: 99%
“…It can be proven, by means of regular stratification (Theorem 2.6), that the k-regulous topology is noetherian (cf. [2,Theorem 4.3], [5,Proposition 11.10]).…”
Section: Regulous Functions and Their Basic Propertiesmentioning
“…It is fair to say that to regulous geometry belong all the results in which regulous functions, stratified‐regular functions or continuous rational functions (these classes of functions are all identical under certain assumptions) play an essential role. For a more complete picture of regulous geometry, the reader may consult .…”
Section: Introductionmentioning
confidence: 99%
“…all identical under certain assumptions) play an essential role. For a more complete picture of regulous geometry, the reader may consult [3,9,10,[16][17][18][19][20][21][22][23][24][25][26][27][28]32,33,39].…”
Among recently introduced new notions in real algebraic geometry is that of regulous functions. Such functions form a foundation for the development of regulous geometry. Several interesting results on regulous varieties and regulous sheaves are already available. In this paper, we define and investigate regulous vector bundles. We establish algebraic and geometric properties of such vector bundles, and identify them with stratified‐algebraic vector bundles. Furthermore, using new results on curve‐rational functions, we characterize regulous vector bundles among families of vector spaces parametrized by an affine regulous variety. We also study relationships between regulous and topological vector bundles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.