“…Fixed point theory is an important tool to investigate the convergence of sequences to limits and unique limits in metric spaces and normed spaces. See, for instance, Pap et al ( 1996 ), Sehgal and Bharucha-Reid ( 1972 ), Schweizer and Sklar ( 1960 ), Eldred and Veeramani ( 2006 ), De la Sen ( 2010a , b ), Choudhury et al ( 2011 , 2012 ), De la Sen and Karapinar ( 2014 , 2015a , b ), Beg et al ( 2001 ), Roldan et al ( 2014 ), Jleli et al ( 2014 ), Roldán-Lopez-de-Hierro et al ( 2015 ), Khan et al ( 1984 ), Choudhury and Das ( 2008 ), Gopal et al ( 2014 ), Takahashi ( 1970 ), Shimizu and Takahashi ( 1996 ), Kaewcharoen and Panyanak ( 2008 ), Karpagam and Agrawal ( 2009 ), Suzuki ( 2006 ), Di Bari et al ( 2008 ), Rezapour et al ( 2011 ), Derafshpour et al ( 2010 ), Al-Thagafi and Shahzad ( 2009 ), Karpagam and Agrawal ( 2009 ), Dutta et al ( 2009 ), Chang et al ( 2001 ), Chen et al ( 2012 ), Chen ( 2012 ), Berinde ( 2007 ), De la Sen et al ( 2015 ) and the wide list of references cited in those papers. In particular, fixed point theory is also a relevant tool to investigate iterative schemes and stability theory of continuous-time and discrete-time dynamic systems, boundedness of the trajectory solutions, stability of equilibrium points, convergence to stable equilibrium points and the existence oscillatory solution trajectories.…”