In this article, we use the idea of “negation” to construct new unit distributions, i.e., continuous distributions with support equal to the unit interval [0, 1]. A notable feature of these distributions is that they have opposite shape properties to the unit distributions from which they are derived; “opposite” in the sense that, from a graphical point of view, a certain horizontal symmetry is operated. We then examine the main properties of these negation-type distributions, including distributional functions, moments, and entropy measures. Finally, concrete examples are described, namely the negation-type power distribution, the negation-type [0, 1]-truncated exponential distribution, the negation-type truncated [0, 1]-sine distribution, the negation-type [0, 1]-truncated Lomax distribution, the negation-type Kumaraswamy distribution, and the negation-type beta distribution. Some of their properties are studied, also with the help of graphics that highlight their original modeling behavior. After the analysis, it appears that the negation-type Kumaraswamy distribution stands out from the others by combining simplicity with a high degree of flexibility, in a sense completing the famous Kumaraswamy distribution. Overall, our results enrich the panel of unit distributions available in the literature with an innovative approach.