We consider the problem of localization of Poisson source by the observations of inhomogeneous Poisson processes. We suppose that there are k detectors on the plane and each detector provides the observations of Poisson processes whose intensity functions depend on the position of the emitter. We describe the properties of the maximum likelihood and Bayesian estimators. We show that under regularity conditions these estimators are consistent, asymptotically normal and asymptotically efficient. Then we propose some simple consistent estimators and this estimators are further used to construct asymptotically efficient One-step MLE-process.