This paper gives a review of our current conceptual understanding of the basic processes of water flow and chemical transport in the untsaturated (vadose) zone and of various deterministic mathematical models that are being used to describe these processes. During the past few decades, tremendous effort has been directed toward unravelling the complexities of various interactive physical, chemical, and microbiological mechanisms affecting unsaturated flow and transport, with contributions being made by soil scientists, geochemists, hydrologists, soil microbiologists, and others. Unfortunately, segmented, disciplinary research has contributed to a lack of experimental and theoretical understanding of the vadose zone, which, in turn, has precluded the accurate prediction and management of flow and contaminant transport through it. Thus a more unified and interdisciplinary approach is needed that considers the most pertinent physical, chemical, and biological processes operative in the unsaturated zone. Challenges for both fundamental and applied researchers to reveal the intricacies of the zone and to integrate these with currently known concepts are numerous, as is the urgency for progress inasmuch as our soil and ground water resources are increasingly subjected to the dangers of long‐term pollution. Specific research areas in need of future investigation are outlined.