Carbon dioxide is a greenhouse gas that contributes to global warming but fortunately can be removed via chemical conversion processes that often involve a reduction step. Dielectric barrier discharge (DBD) plasma is an effective way to promote chemical reduction processes but requires a catalyst for energetically demanding reactions. In this study, the rapid conversion of CO2 into solid carbon via a DBD plasma is reported using dispersed liquid metal Ga which is first converted into GaOOH particles to ultimately form a GaOOH/C nanocomposite. Raman and X‐ray diffraction (XRD) experiments indicate that amorphous activated carbon is formed after the plasma treatment. Further analysis demonstrates that highly dispersed sub‐nano‐sized carbon particles containing oxygen functional groups are formed uniformly on the GaOOH surface. The CO2 conversion mechanism suggests that plasma electrons activate CO2 molecules, while plasma‐generated oxygen vacancies on the catalyst surface help dissociate CO2 into solid carbon. This work opens a new approach for synthesizing materials comprising of highly dispersed sub‐nano‐sized carbon on a metal oxide support suitable for other applications such as adsorption, heterogenous catalysis, and energy conversion.