Cellulose acetate is an important product derived from cellulose. Cellulose acetate can be used in a variety of applications including coatings, textile fibers, consumer goods, filtration membranes, composites, laminates, pharmaceutical, and medical items. Rice husk is a lignocellulosic material that contains cellulose and hemicellulose. The aims of this study were to determine the effect of process variables on the cellulose acetate product formation by ultrasound-assisted acetylation using iodine as a catalyst and to characterize the cellulose acetate product. The research was conducted through the delignification, bleaching, acetylation, and characterization processes. The results showed that the optimum yield of cellulose acetate was obtained at the temperature of 60 °C, the reaction time of 50 min, the weight of the catalyst of 10% of cellulose weight, and the ratio of cellulose and acetic anhydride of 1:5 (w/v). The acetylation process using iodine as a catalyst with an ultrasound-assisted method was more effective than the conventional acetylation (acetic acid glacial and sulfuric acid as a catalyst).