<p>We have developed a transferable reactive force field for C/O systems under extreme temperature and pressure conditions based on the many-body Chebyshev Interaction Model for Efficient Simulation (ChIMES). The resulting model is shown to recover much of the accuracy of DFT for prediction of structure, dynamics and chemistry when applied to dissociative systems at 1:1 and 1:2 C:O ratios, as well as molten carbon. Our C/O modeling approach exhibits a 10<sup>4</sup> increase in efficiency and linear system size scalability over standard quantum molecular dynamics methods, allowing simulation of significantly larger systems than previously possible. Furthermore, we show that system sizes of at least 500 atoms are required to observe the formation of experimentally predicted molten carbon condensates under oxygen-deficient conditions, indicative of possible system size effects in quantum simulations of these types of systems. Overall, we find the present ChIMES model to be well suited for modeling chemical processes and cluster formation at pressures and temperatures typical of shock waves. We expect that the present C/O modeling paradigm can serve as a template for the development of a high pressure --high temperature organic chemistry force-field. </p>