A convenient way to classify uremic solutes is to subdivide them according to the physicochemical characteristics influencing their dialytic removal into small water-soluble compounds (<500 Da), protein-bound compounds, and middle molecules (>500 Da). The prototype of small water-soluble solutes remains urea although the proof of its toxicity is scanty. Only a few other water-soluble compounds exert toxicity (e.g., the guanidines, the purines), but most of these are characterized by an intra-dialytic behavior, which is different from that of urea. In addition, the protein-bound compounds and the middle molecules behave in a different way from urea, due to their protein binding and their molecular weights, respectively. Because of these specific removal patterns, it is suggested that new approaches of influencing uremic solute concentration should be explored, such as specific adsorptive systems, alternative dialytic timeframes, removal by intestinal adsorption, modification of toxin, or general metabolism by drug administration. Middle molecule removal has been improved by the introduction of large pore, high-flux membranes, but this approach seems to have come close to its maximal removal capacity, whereas multicompartmental behavior might become an additional factor hampering attempts to decrease toxin concentration. Hence, further enhancement of uremic toxin removal should be pursued by the introduction of alternative concepts of elimination.