Biocomposites of natural rubber (NR) blends were prepared with a variety of fillers obtained from renewable resources by a mastication technique. They were characterized for their mechanical properties and morphologies and compared with composites of the conventional filler carbon black (c-black). The biopolymers exhibited an interesting trend and imparted strength to NR that was quite comparable to c-black. Up to 30 phr of the fillers could be successfully incorporated; this led to enhancements in the mechanical strength. The properties were found to vary with the type and ratio of filler, namely, starch, cellulose, and chitin. The optimum mechanical strength of the biocomposites was observed at 10 phr. The results were interpreted on the basis of the morphology by scanning electron microscopy, which revealed strong filler-polymer interactions. The moisture-uptake characteristics of the composites were studied. It was found that addition of biofillers did not lead to a significant increase in the moisture absorption. Furthermore, as the adhesion between the polymer matrix and fillers increased, the water uptake decreased.