Detailed assessments of adsorption properties (isotherm, thermodynamics and kinetics) were carried out on chemically modified activated carbon (AC). Some pretreatment methods prior amination have been used to improve the CO 2 selective capture of AC in our previous works. Here, the inter-relationships among the adsorption properties were further investigated and reported. It was found that CO 2 molecules bind onto the heterogeneous surfaces of AC in a monolayer pattern as experimental data fit Freundlich isotherm rather than Langmuir. However, Redlich-Peterson, a 3-parameter model provided the best fit. The highest degree of precision of Chi-square analysis professed it as the most efficient error function for the isotherm study. Values of standard entropy showed to be the most significant thermodynamic limiting parameter in the adsorption process, as physisorption was found predominant for CO 2 collection at the interface. This observation was corroborated with temperature programmed desorption (TPD) analysis where ca. 86% of adsorbed CO 2 were desorbed below 500°C. The kinetic study indicated that CO 2 -AC interaction follows pseudo-second order while the higher R 2 of intraparticle diffusion over Elovich equation confirmed the deduction made from the thermodynamic study. Conclusively, the study of adsorption properties in this work provides useful information for designing proper adsorption reactor and subsequent regeneration of CO 2 -laden adsorbents at environmental levels.