The transmission of sound through slits and openings between cuboid-shaped rooms is analysed. A deterministic model that describes the pressure fields inside the rooms in terms of eigenfunctions and uses the Dirichlet-to-Neumann technique in order to reproduce the slit effect is presented. An efficient formulation of the problem is obtained thanks to the splitting of the original domain into three domains: sending room, slit, receiving room. The geometry and boundary conditions of the problem can be modelled in detail like in an element-based numerical technique (such as the finite element method) but with smaller computational costs. The model is compared with numerical solutions, existent models and published experimental data. Afterwards it is used to analyse some aspects such as the influence of slit dimensions, opening position, room properties (dimensions and absorption) that cannot be taken into account with the available models. These usually suppose that the slit or opening connects two unbounded acoustic domains.