Seamounts have important effects on sound propagation in deep water. A sound propagation experiment was conducted in the South China Sea in 2016. The three-dimensional (3D) effects of a seamount on sound propagation are observed in different propagation tracks. Ray methods (BELLHOP N×2D and 3D models) are used to analyze and explain the phenomena. The results show that 3D effects have obvious impacts on a sound field within a horizontal refraction zone behind the seamount because some sound beams cannot reach the receiver for the horizontal refraction effects, which impacts the sound field within a certain angle range behind the seamount. The arrival structure results show that the eigenrays after horizontal reflection will arrive at the receiver earlier than those obtained from the two-dimensional (2D) model within the horizontal refraction zone behind the seamount. This means that the horizontal reflection effect of a seamount will cause the shortening of sound propagation paths. Finally, in the reflection zone in front of the seamount, the 2D and 3D TL results show that the shape of the reflection zone is similar to an “arch” type, and the horizontal refraction of sound waves has little effect on the TLs in the reflection zone of a seamount.