Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit is characterized by a relatively shallow water table, moderate–to–strong aquifer productivity, high salinity, and a KCl content that meets the conditions for exploitation, with the advantage of reduced salt crystallization during well mining, making it a potential reserve base for potash development. A geochemical analysis of the sand–gravel brine revealed consistent trends for the major ions K+, Na+, Mg2+, Cl−, and SO42− along the east–west axis of the alluvial fan, while Ca2+ showed an opposite trend compared to Mg2+. Along the exploration lines from north to south, the concentrations of the main ions gradually increase. The brine is enriched in Na+ and Cl− ions, while SO42− and HCO3− are depleted. In the K+-Na+-Mg2+/Cl−-H2O (25 °C) quaternary phase diagram, the brine falls within the halite stability field, with the hydrochemical type classified as chloride type. The brine coefficient characteristics indicate a multi-source origin involving residual evaporation, salt rock leaching, and metamorphic sedimentary brine. Comparison studies of the ionic composition and isotopic signatures (δD, δ18O, δ37Cl, and δ7Li) of deep sand–gravel brines in the study area with interstitial and confined brines in the southern depression suggest similar geochemical characteristics between them. The genetic analysis of the deposit proposes that during the basin tectonic evolution, the potassium-rich interstitial and confined brines originally located in the southern depression of the Mahai Basin were displaced under compressional forces and migrated northward as the depositional center shifted, eventually backfilling into the loose alluvial and fluvial sand and gravel reservoirs at the front of the Saishiteng Mountains, forming the deep sand–gravel brine deposits in the foreland.
The sand–gravel brine deposit in the Mahai Basin is a newly discovered large-scale potassium–bearing brine deposit. The potassium–bearing brine is primarily found at depths exceeding 150 m within the porous alluvial and fluvial sand–gravel reservoir of the Middle to Lower Pleistocene. This deposit is characterized by a relatively shallow water table, moderate–to–strong aquifer productivity, high salinity, and a KCl content that meets the conditions for exploitation, with the advantage of reduced salt crystallization during well mining, making it a potential reserve base for potash development. A geochemical analysis of the sand–gravel brine revealed consistent trends for the major ions K+, Na+, Mg2+, Cl−, and SO42− along the east–west axis of the alluvial fan, while Ca2+ showed an opposite trend compared to Mg2+. Along the exploration lines from north to south, the concentrations of the main ions gradually increase. The brine is enriched in Na+ and Cl− ions, while SO42− and HCO3− are depleted. In the K+-Na+-Mg2+/Cl−-H2O (25 °C) quaternary phase diagram, the brine falls within the halite stability field, with the hydrochemical type classified as chloride type. The brine coefficient characteristics indicate a multi-source origin involving residual evaporation, salt rock leaching, and metamorphic sedimentary brine. Comparison studies of the ionic composition and isotopic signatures (δD, δ18O, δ37Cl, and δ7Li) of deep sand–gravel brines in the study area with interstitial and confined brines in the southern depression suggest similar geochemical characteristics between them. The genetic analysis of the deposit proposes that during the basin tectonic evolution, the potassium-rich interstitial and confined brines originally located in the southern depression of the Mahai Basin were displaced under compressional forces and migrated northward as the depositional center shifted, eventually backfilling into the loose alluvial and fluvial sand and gravel reservoirs at the front of the Saishiteng Mountains, forming the deep sand–gravel brine deposits in the foreland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.