Abstract. The aim in electric impedance tomography is to recover the conductivity inside a physical body from boundary measurements of current and voltage. In many situations of practical importance, the investigated object has known background conductivity but is contaminated by inhomogeneities. In this work, we try to extract all possible information about the support of such inclusions inside a twodimensional object from only one pair of measurements of impedance tomography. Our noniterative and computationally cheap method is based on the concept of the convex source support, which stems from earlier works of Kusiak, Sylvester, and the authors. The functionality of our algorithm is demonstrated by various numerical experiments.