Several viruses, including human cytomegalovirus (HCMV), encode proteins that colocalize with a cellular subnuclear structure known as ND10. Since only viral DNA deposited at ND10 initiates transcription, ND10 structures were hypothesized to be essential for viral replication. On the other hand, interferon treatment induces an up-regulation of ND10 structures and viruses have evolved polypeptides that disperse the dot-like accumulation of ND10 proteins, suggesting that ND10 could also be part of an intrinsic defense mechanism. In order to obtain evidence for either a proviral or an antiviral function of ND10, we generated primary human fibroblasts with a stable, short interfering RNA-mediated knockdown (kd) of PML. In these cells, other ND10-associated proteins like hDaxx showed a diffuse nuclear distribution. Interestingly, we observed that HCMV infection induced the de novo formation of ND10-like hDaxx and Sp100 accumulations that colocalized with IE2 and were disrupted, in the apparent absence of PML, in an IE1-dependent manner during the first hours after infection. Furthermore, infection of PML-kd cells with wild-type HCMV at a low multiplicity of infection resulted in enhanced replication. In particular, a significantly increased plaque formation was detected, suggesting that more cells are able to support initiation of replication in the absence of PML. While there was no difference in viral DNA uptake between PML-kd and control cells, we observed a considerable increase in the number of immediate-early (IE) protein-positive cells, indicating that the depletion of PML augments the initiation of viral IE gene expression. These results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections.In addition to the conventional innate and adaptive immune responses, it was recently recognized that complex organisms have evolved a set of constitutively expressed genes that are able to repress viral infections. These so-called intrinsic immune mechanisms involve the APOBEC3 class of cytidine deaminases as well as a large family of proteins termed the TRIM family (7, 52). We were interested in determining the role of the interferon-inducible TRIM19, also known as promyelocytic leukemia protein (PML), for human cytomegalovirus (HCMV) replication. PML is essential for the integrity of a cellular subnuclear structure, termed ND10, which has been shown to colocalize with herpesvirus DNA during infection (47).ND10 domains, also known as nuclear dots, PML nuclear bodies, or promyelocytic oncogenic domains, are spherical nuclear substructures which represent accumulations of multiple cellular proteins like Sp100, hDaxx, BLM, or SUMO-1 that require the PML protein for their formation (51). Since PML constitutes the defining component of ND10, loss of PML consequently leads to a dispersal of other ND10-associated proteins as observed in mouse PML-null fibroblasts (30,66,67). The PML protein was originally discovered in patients suffering from acute promyelocytic leukemia...