Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the frame of a collaboration between CERN, ASI, University of Trento, and TIFPA, the HTS demonstrator magnet for space project has started to define methods and procedures for manufacturing high temperature superconducting magnets for space applications. To this purpose, we developed a conceptual design of a superconducting magnetic spectrometer for a physics experiment in space. The configuration is a toroid with twelve superconducting coils based on ReBCO tape. By using ReBCO tape with an engineering critical current density, J e, exceeding 1000 A mm−2 at 4.2 K and 20 T , as reached in the H2020-ARIES program, the magnet system provides an average bending strength of 3 T m . This is sufficient to measure charged particles with rigidities up to 100 TV , more than two orders of magnitude higher than the present state-of-the-art space spectrometer. The magnet system requires about 62 km of 12 mm ReBCO tape and produces a peak magnetic field of 11.9 T at an operating temperature of 20 K . A small scale single coil, which is about one third in size of a coil from the toroidal magnet system, will be manufactured and tested as demonstrator of the magnet technology. The mechanical structure and performance of the toroidal magnet system and demonstrator coil are described.
In the frame of a collaboration between CERN, ASI, University of Trento, and TIFPA, the HTS demonstrator magnet for space project has started to define methods and procedures for manufacturing high temperature superconducting magnets for space applications. To this purpose, we developed a conceptual design of a superconducting magnetic spectrometer for a physics experiment in space. The configuration is a toroid with twelve superconducting coils based on ReBCO tape. By using ReBCO tape with an engineering critical current density, J e, exceeding 1000 A mm−2 at 4.2 K and 20 T , as reached in the H2020-ARIES program, the magnet system provides an average bending strength of 3 T m . This is sufficient to measure charged particles with rigidities up to 100 TV , more than two orders of magnitude higher than the present state-of-the-art space spectrometer. The magnet system requires about 62 km of 12 mm ReBCO tape and produces a peak magnetic field of 11.9 T at an operating temperature of 20 K . A small scale single coil, which is about one third in size of a coil from the toroidal magnet system, will be manufactured and tested as demonstrator of the magnet technology. The mechanical structure and performance of the toroidal magnet system and demonstrator coil are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.