We investigate capital expenditure (CapEx) advantages of multi-core fiber (MCF) networks by modeling and solving CapEx-minimized planning problem. Integer linear programming model is established, and numerical results are calculated and analyzed. We conduct the solving process under two kinds of traffic patterns of light traffic and heavy traffic. The influences of inter-core crosstalk on MCF and its multi-input multi-output (MIMO)-based crosstalk suppression are also evaluated. Numerical results show that when inter-core crosstalk in MCF is not considered, MCF networks have CapEx advantages under both given traffic patterns by using mixed MCF&SCF deployment strategy, despite the variation in MCF optical amplifier's price whose cost takes the largest share of the total network CapEx. However, when the inter-core crosstalk in MCF is taken into consideration, the costs of networks using MCF go higher than those of single-core fiber (SCF) networks. With the help of MIMObased inter-core crosstalk suppression, the negative impact of inter-core crosstalk can be mitigated, and MCF can still show its CapEx advantages when the traffic load is heavy.