A number of tectonic models have been proposed for the Tibetan Plateau, which origin, however, remains poorly understood. In this study, investigations of the shear wave velocity (Vs) and density (ρ) structures of the crust and upper mantle evidenced three remarkable features: (1) There are variations in Vs and ρ of the metasomatic mantle wedge in the hanging wall of the subduction beneath different tectonic blocks of Tibet, which may be inferred as related to the dehydration of the downgoing slab. (2) Sections depicting gravitational potential energy suggest that the subducted lithosphere is less dense than the ambient rocks, and thus, being buoyant, it cannot be driven by gravitational slab pull. The subduction process can be inferred by the faster SW-ward motion of Eurasia relative to India as indicated by the plate motions relative to the mantle. An opposite NE-ward mantle flow can be inferred beneath the Himalaya system, deviating E and SE-ward toward China along the tectonic equator. (3) The variation in the thickness of the metasomatic mantle wedge suggests that the leading edge of the subducting Indian slab reaches the Bangoin-Nujiang suture (BNS), and the metasomatic mantle wedge overlaps with a region with poor Sn-wave propagation in north Tibet. The metasomatic layer, north of the BNS, deforms in the E-W direction to accommodate lithosphere shortening in south Tibet.