Fault Tree Analysis (FTA) is a dependability analysis technique that has been widely used to predict reliability, availability and safety of many complex engineering systems. Traditionally, these FTAbased analyses are done using paper-and-pencil proof methods or computer simulations, which cannot ascertain absolute correctness due to their inherent limitations. As a complementary approach, we propose to use the higher-order-logic theorem prover HOL4 to conduct the FTAbased analysis of safety-critical systems where accuracy of failure analysis is a dire need. In particular, the paper presents a higher-order-logic formalization of generic Fault Tree gates, i.e., AND, OR, NAND, NOR, XOR and NOT and the formal verification of their failure probability expressions. Moreover, we have formally verified the generic probabilistic inclusion-exclusion principle, which is one of the foremost requirements for conducting the FTA-based failure analysis of any given system. For illustration purposes, we conduct the FTA-based failure analysis of a solar array that is used as the main source of power for the Dong Fang Hong-3 (DFH-3) satellite.