Rumen microbial development and adaptation are essential in ruminal feed digestion. Many studies have been undertaken to improve ruminal fermentation by modulating the profile of the rumen microbial community i.e. using biological and dietary treatments. However, the result of trying to modulate the rumen microbial community has often been inconsistent. Previous studies have indicated that host specificity influences the rumen microbiome resulting in variation between animals. However, the core rumen microbial community across animals, even with different diets and from differing geographical locations, tends to be similar demonstrating a resilience of the core microbiome against interruptive events. Thus, information related to these characteristics is important for the design and formulation of treatments for modulating the rumen microbiome to enable interventions to persist in the long term.In this study, the changes to the rumen microbial community were investigated during rumen perturbation at three different time frames, i.e. pre-ruminant, post-weaning, and adult. The treatments consisted of probiotic administered to young calves (Chapter 3), feed supplementation of post-weaned cattle (Chapter 4), and movement and change of feed in adult cows (Chapter 5). The plasticity of the core rumen microbiome was investigated when cattle were moved onto a higher quality floodplain pasture-based diet (Chapter 5).Results tend to suggest that the rumen microbial community was less significantly impacted in pre-weaning animals compared to post-weaning and adult animals. Bacillus amylolyquefaciens strain H57, used as a probiotic, was inoculated into four-day old dairy calves (22 in total) through milk replacer for eight weeks. Although populations of Prevotella and Shuttleworthia increased in the core rumen microbiome, the overall rumen microbial diversity was not affected by H57 inoculation.Addition of H57 also increased the predicted functional genes for peptide metabolism in the core rumen microbial community. However, the results also suggested that H57 may have failed to establish in the rumen of dairy calves, as indicated by a low number of H57 in the rumen of treated calves. The low number of H57 in the rumen might be caused by the oesophageal groove mechanism bypassing milk replacer containing H57 into the lower GI tract rather than to the rumen.Recently weaned beef cattle heifers were fed a low-quality hay (38 g/kg DM of CP) and supplemented with copra meal and corn or no supplement as control (Chapter 4). The results showed that the rumen microbial diversity and predicted functional genes of the core rumen microbiome were significantly affected by feed supplementation. Feed supplementation reduced the diversity and species richness of the rumen microbial community. In both non-core and core microbiome data sets, feed supplementation significantly increased the relative abundance of Christensenellaceae R-7 group, Ruminococcus, Ruminococcaceae UCG-014, and Lachnospiraceae XPB1014. The predicted "A journey of a thou...