Direct and hybrid microwave sintering of 3Y‐ZrO2 are comparatively studied at frequency of 2.45 GHz. Using the continuum theory of sintering, a fully coupled electromagnetic‐thermal‐mechanical (EMTM) finite element simulation is carried out to predict powder samples deformation during their microwave processing. Direct and hybrid heating configurations are computationally tested using advanced heat transfer simulation tools including the surface to surface thermal radiation boundary conditions and a numeric proportional‐integral‐derivative regulation (PID). The developed modeling framework shows a good agreement of the calculation results with the known experimental data on the microwave sintering of 3Y‐ZrO2 in terms of the densification kinetics. It is shown that the direct heating configuration renders highly hot spot effects resulting in nonhomogenous densification causing processed specimen's final shape distortions. Compared with the direct heating, the hybrid heating configuration provides a reduction of the thermal inhomogeneity along with a densification homogenization. As a result of the hybrid heating, the total densification of the specimen is attained without specimen distortions. It is also shown that the reduction of the sample size has a stabilization effect on the temperature and relative density spatial distributions.