Active noise control (ANC) over a sizeable space requires a large number of reference and error microphones to satisfy the spatial Nyquist sampling criterion, which limits the feasibility of practical realization of such systems. This paper proposes a mode-domain feedforward ANC method to attenuate the noise field over a large space while reducing the number of microphones required. We adopt a sparse reference signal representation to precisely calculate the reference mode coefficients. The proposed system consists of circular reference and error microphone arrays, which capture the reference noise signal and residual error signal, respectively, and a circular loudspeaker array to drive the anti-noise signal. Experimental results indicate that above the spatial Nyquist frequency, our proposed method can perform well compared to a conventional methods. Moreover, the proposed method can even reduce the number of reference microphones while achieving better noise attenuation.Index Terms-Active noise control, adaptive algorithm, modedomain signal processing, compressive sensing, sparse signal representation