2023
DOI: 10.1002/mma.9785
|View full text |Cite
|
Sign up to set email alerts
|

Sparse precision matrix estimation under lower polynomial moment assumption

Li Miao,
Jinru Wang

Abstract: Precision matrix (inverse covariance matrix) estimation is a rising challenge in contemporary applications while dealing with high‐dimensional data. This paper focuses on large‐scale precision matrix of the random vector that only has lower polynomial moments. We mainly investigate upper bounds of the proposed estimator under the spectral norm in terms of the probability and mean estimation respectively. It is shown that the data‐driven estimator is fully adaptive and achieves the same optimal convergence orde… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?