We study the fundamental limits on the reliable storage of quantum information in lattices of qubits by deriving tradeoff bounds for approximate quantum error correcting codes. We introduce a notion of local approximate correctability and code distance, and give a number of equivalent formulations thereof, generalizing various exact error-correction criteria. Our tradeoff bounds relate the number of physical qubitsn, the number of encoded qubitsk, the code distanced, the accuracy parameterδthat quantifies how well the erasure channel can be reversed, and the locality parameterℓthat specifies the length scale at which the recovery operation can be done. In a regime where the recovery is successful to accuracyϵthat is exponentially small inℓ, which is the case for perturbations of local commuting projector codes, our bound readskd2D−1≤O(n(logn)2DD−1)for codes onD-dimensional lattices of Euclidean metric. We also find that the code distance of any local approximate code cannot exceedO(ℓn(D−1)/D)ifδ≤O(ℓn−1/D). As a corollary of our formulation of correctability in terms of logical operator avoidance, we show that the code distancedand the sized~of a minimal region that can support all approximate logical operators satisfiesd~d1D−1≤O(nℓDD−1), where the logical operators are accurate up toO((nδ/d)1/2)in operator norm. Finally, we prove that for two-dimensional systems if logical operators can be approximated by operators supported on constant-width flexible strings, then the dimension of the code space must be bounded. This supports one of the assumptions of algebraic anyon theories, that there exist only finitely many anyon types.