2023
DOI: 10.1371/journal.pone.0282171
|View full text |Cite
|
Sign up to set email alerts
|

Sparse representation learning derives biological features with explicit gene weights from the Allen Mouse Brain Atlas

Abstract: Unsupervised learning methods are commonly used to detect features within transcriptomic data and ultimately derive meaningful representations of biology. Contributions of individual genes to any feature however becomes convolved with each learning step, requiring follow up analysis and validation to understand what biology might be represented by a cluster on a low dimensional plot. We sought learning methods that could preserve the gene information of detected features, using the spatial transcriptomic data … Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 31 publications
0
0
0
Order By: Relevance