Abstract:In the present study, we consider sparse representations of solutions to Dirichlet and heat equation problems with random boundary or initial conditions. To analyze the random signals, two types of sparse representations are developed, namely stochastic pre-orthogonal adaptive Fourier decomposition 1 and 2 (SPOAFD1 and SPOAFD2). Due to adaptive parameter selecting of SPOAFDs at each step, we obtain analytical sparse solutions of the SPDE problems with fast convergence.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.