2019
DOI: 10.48550/arxiv.1902.06443
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Sparse residual tree and forest

Abstract: Sparse residual tree (SRT) is an adaptive exploration method for multivariate scattered data approximation. It leads to sparse and stable approximations in areas where the data is sufficient or redundant, and points out the possible local regions where data refinement is needed. Sparse residual forest (SRF) is a combination of SRT predictors to further improve the approximation accuracy and stability according to the error characteristics of SRTs. The hierarchical parallel SRT algorithm is based on both tree d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 21 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?