2017 International Conference on Sampling Theory and Applications (SampTA) 2017
DOI: 10.1109/sampta.2017.8024410
|View full text |Cite
|
Sign up to set email alerts
|

Sparse signal recovery using structured total maximum likelihood

Abstract: Abstract-In this paper, we consider the sparse signal recovery problem when the dictionary is a Fourier frame. Based on the annihilation relation, the sparse signal recovery from noisy observations is posed as a structured total maximum likelihood (STML) problem. The recent structured total least squares (STLS) approach for finite rate of innovation signal recovery can be viewed as a particular version of our method. We transform the STML problem which has an additional logdet term into a form similar to the S… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 27 publications
0
0
0
Order By: Relevance