SPASER (surface plasmon amplification by stimulated emission of radiation) properties in active SiO2–Ag nanotubes and associated dimers have been investigated by using the scattering theory and the finite element method. In the active Ag nanotube, as the gain coefficient of the core increases to a critical value, a super-resonance occurs. The SPASER phenomenon also can be found in the active Ag nanotube dimer. The strong couplings between two nanotubes lead to larger gain threshold for the active Ag nanotube dimer compared with the active Ag nanotube. At the super-resonance, the maximal surface enhanced Raman scattering factor at the “hot spot” in the active Ag nanotube dimer can achieve about 8 × 1018, which is large enough for single molecule detection. Furthermore, with increasing the separation between two Ag nanotubes, the gain threshold value for the super-resonance of the active Ag nanotube dimer decreases, while the corresponding super-resonance wavelength increases first and then decreases.