Evaluating waterlogging vulnerability and analyzing its characteristics and future trends can provide scientific support for urban disaster prevention and reduction. For this study, taking Fuzhou as an example, an urban waterlogging vulnerability assessment system was constructed from the three dimensions of exposure, sensitivity, and adaptive capacity. The entropy method was used to evaluate urban waterlogging vulnerability in Fuzhou during 2014–2020. The use of CA–Markov to predict waterlogging vulnerability in 2023, 2026, and 2029 in Fuzhou is an important innovation reported in this paper. Study results showed that: (1) Vulnerability to waterlogging in Fuzhou follows a gradually decreasing “center-southeast” distribution pattern, with Level 5 areas mainly located in Cangshan District, Gulou District, and Taijiang District. (2) Changes in waterlogging vulnerability in Fuzhou from 2014 to 2020 can be divided into five change modes, with changing areas, mainly of the late-change type, accounting for 14.13% of the total area. (3) Prediction accuracy verification shows that the CA–Markov model is suitable for predicting waterlogging vulnerability in Fuzhou with high accuracy and a kappa coefficient of 0.9079. (4) From 2020 to 2029, the vulnerability level of the eastern coastal region of Fuzhou is expected to generally increase, and the vulnerability degree will continue to deteriorate. The proportion of Level 5 vulnerable areas will increase by 4.5%, and the growth rate will increase faster and faster with the passage of time.