For the storage of hydrocarbons, hydrogen, or other products, underground caverns left over from the exploitation of salt deposits, or made specifically for this purpose, are successfully used. This article analyses the effectiveness of currently used well-leaching technologies in terms of the possibility of increasing the speed of obtaining industrial brine, better control of the shape of the created cavern, and, as a result, a shorter production time. An innovative solution was proposed, which consisted of creating appropriate niches in the walls of the leach well using the high-pressure hydrojet technique, just before the start of the sump leaching. A series of numerical simulations of the technologies were performed for various combinations of niche locations along the well, determining the successive phases of the formation of the cavern space at individual stages and the brine concentration increments for the two assumed technology scenarios. As a result of the modified technology, the possibility of creating a sump with a volume greater than 17%, compared to the classical method carried out at the same time, was indicated. The resulting sump also had a better shape to partially eliminate the reduction in leaching efficiency due to the accumulation of insoluble matter at the bottom. In addition, the brine obtained according to the modified technology had a 15% higher concentration than in the classical method.