Remote sensing has been used as an important means of modern crop production monitoring, especially for wheat quality prediction in the middle and late growth period. In order to further improve the accuracy of estimating grain protein content (GPC) through remote sensing, this study analyzed the quantitative relationship between 14 remote sensing variables obtained from images of environment and disaster monitoring and forecasting small satellite constellation system equipped with wide-band CCD sensors (abbreviated as HJ-CCD) and field-grown winter wheat GPC. The 14 remote sensing variables were normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), optimized soiladjusted vegetation index (OSAVI), nitrogen reflectance index (NRI), green normalized difference vegetation index (GNDVI), structure intensive pigment index (SIPI), plant senescence reflectance index (PSRI), enhanced vegetation index (EVI), difference vegetation index (DVI), ratio vegetation index (RVI), R blue (reflectance at blue band), R green (reflectance at green band), R red (reflectance at red band) and R nir (reflectance at near infrared band). The partial least square (PLS) algorithm was used to construct and validate the multivariate remote sensing model of predicting wheat GPC. The research showed a close relationship between wheat GPC and 12 remote sensing variables other than R blue and R green of the spectral reflectance bands. Among them, except PSRI and R blue , R green and R red , other remote sensing vegetation indexes had significant multiple correlations. The optimal principal components of PLS model used to predict wheat GPC were: NDVI, SIPI, PSRI and EVI. All these were sensitive variables to predict wheat GPC. Through modeling set and verification set evaluation, GPC prediction models' coefficients of determination (R 2) were 0.84 and 0.8, respectively. The root mean square errors (RMSE) were 0.43% and 0.54%, respectively. It indicated that the PLS algorithm model predicted wheat GPC better than models for linear regression (LR) and principal components analysis (PCA) algorithms. The PLS algorithm model's prediction accuracies were above 90%. The improvement was by more than