Parasites are integral members of the global biodiversity. They are useful indicators of environmental stress, food web structure and diversity. Ectoparasites have the potential to transmit vector-borne diseases of public health and veterinary importance and to play an important role in the regulation and evolution of host populations. The interlinkages between hosts, parasites and the environment are complex and challenging to study, leading to controversial results. Most previous studies have been focused on one or two parasite groups, while host are often co-infected by different taxa. The present study aims to assess the influence of environmental and host traits on the entire ectoparasite community composition of the rodent Akodon azarae. A total of 278 rodents were examined and mites (Mesostigmata), lice (Phthiraptera), ticks (Ixodida) and fleas (Siphonaptera) were determined. A Multi Correspondence Analyses was performed in order to analyse interactions within the ectoparasite community and the influence of environmental and host variables on this assembly. We found that environmental variables have a stronger influence on the composition of the ectoparasite community of A. azarae than the host variables analysed. Minimum temperature was the most influential variable among the studied. In addition, we found evidence of agonistic and antagonistic interactions between ticks and mites, lice and fleas. The present study supports the hypothesis that minimum temperature play a major role in the dynamics that shape the ectoparasite community of A. azarae, probably through both direct and indirect processes. This finding becomes particularly relevant in a climate change scenario.