2016
DOI: 10.1088/1755-1315/37/1/012064
|View full text |Cite
|
Sign up to set email alerts
|

Spatial assessment of land surface temperature and land use/land cover in Langkawi Island

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
11
0
1

Year Published

2016
2016
2024
2024

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 17 publications
(13 citation statements)
references
References 22 publications
1
11
0
1
Order By: Relevance
“…Spectral indices were predictor variables and temperature was the target variable, the gained outcome were R 2 =0.98-0.99 determination coefficients; however, the relationship was not obvious, they had to apply a threshold value with two curve fitting to reach this result. There are relevantly less experience with MNDWI, nevertheless it has favorable capability for water detection according to our results; studies found both NDVI and MNDWI useful indicators in environment monitoring (Liu et al 2009;Bakar et al 2016;). Xu (2007) found MNDWI (and SAVI and NDBI) effective in mapping built-up areas related to the application of NDVI and NDWI or even to the Principal Component Analysis of the original bands of a Landsat ETM+ image.…”
Section: Discussionmentioning
confidence: 66%
“…Spectral indices were predictor variables and temperature was the target variable, the gained outcome were R 2 =0.98-0.99 determination coefficients; however, the relationship was not obvious, they had to apply a threshold value with two curve fitting to reach this result. There are relevantly less experience with MNDWI, nevertheless it has favorable capability for water detection according to our results; studies found both NDVI and MNDWI useful indicators in environment monitoring (Liu et al 2009;Bakar et al 2016;). Xu (2007) found MNDWI (and SAVI and NDBI) effective in mapping built-up areas related to the application of NDVI and NDWI or even to the Principal Component Analysis of the original bands of a Landsat ETM+ image.…”
Section: Discussionmentioning
confidence: 66%
“…Nhiều nghiên cứu trên thế giới và Việt Nam đã sử dụng dữ liệu ảnh viễn thám hồng ngoại nhiệt độ phân giải trung bình như Landsat, Aster trong đánh giá diễn biến nhiệt độ bề mặt ở các đô thị lớn, từ đó chứng minh sự tồn tại của các "đảo nhiệt" đô thị -urban heat islands. Có thể kể đêń cać nghiên cứu của Alipour et al (2004) [1], Balling and Brazel (1988) [2], Cueto et al (2007) [3], Hyung Moo Kim et al (2005) [4], Kumar (2012) [5], Maltick et al (2008) [6], Trịnh Lê Hùng (2014) [7], Yuan et al (2007) [8],…Nhiều nghiên cứu như của Anadababu et al (2018) [9], Bakar et al (2016) [10], Boori et al (2014) [11], Guha et al (2018) [12], Pal and Ziaul (2017) [13], Bùi Quang Thành (2015) [14], Nguyễn Đức Thuận và Phạm Văn Vân (2016) [15], Trần Thị Vân và cộng sự (2009) [16]…đã chứng minh mối quan hệ chặt chẽ giữa nhiệt độ và lớp phủ, trong đó các khu vực có mật độ xây dựng cao và lớp phủ thực vật thưa có nhiệt độ cao hơn rất nhiều so với các khu vực được che phủ bởi lớp phủ thực vật dày.…”
Section: Mở đầU unclassified
“…Rana and Suryanarayana [ 14 ] analyzed the contribution of various LULC types on LST by comparing four machine learning models (K-Nearest Neighbor, Artificial Neural Network, Random Tree, and Support Vector Machine). Bakar et al [ 15 ] used a support vector machine and maximum likelihood method to investigate the relationship between LST and LULC. Gage and Cooper [ 16 ] evaluated the relative importance of LULC, NDVI, and vertical structure for LST patterns through random forest modeling.…”
Section: Introductionmentioning
confidence: 99%