Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Navigating around the world, we must adaptively allocate attention to our surroundings based on anticipated future stimuli and events. This allocation of spatial attention boosts visuocortical representations at attended locations and locally enhances perception. Indeed, spatial attention has often been analogized to a “spotlight” shining on the item of relevance. Although the neural underpinnings of the locus of this attentional spotlight have been relatively well studied, less is known about the size of the spotlight: to what extent can the attentional field be broadened and narrowed in accordance with behavioral demands? In this study, we developed a paradigm for dynamically estimating the locus and spread of covert spatial attention, inferred from visuocortical activity using fMRI in humans. We measured BOLD activity in response to an annulus while participants (4 female, 4 male) used covert visual attention to determine whether more numbers or letters were present in a cued region of the annulus. Importantly, the width of the cued area was systematically varied, calling for different sizes of the attentional spotlight. The deployment of attention was associated with an increase in BOLD activity in corresponding retinotopic regions of visual areas V1—V3. By modeling the visuocortical attentional modulation, we could reliably recover the cued location, as well as a broadening of the attentional enhancement with wider attentional cues. This modeling approach offers a useful window into the dynamics of attention and spatial uncertainty.Significance StatementThis study explores whether spatial attention can dynamically adapt by shifting and broadening the attentional field. While previous research has focused on the modulation of neural responses at attended locations, less is known about how the size of the attentional field is represented within visual cortex. Using fMRI, we developed a novel paradigm to estimate the spatial tuning of the attentional field and demonstrate that we were able to recover both the location as well as the width of the attentional field. Our findings offer new insights into the neural mechanisms underlying the deployment of spatial attention, contributing to a deeper understanding of how spatial attention supports visual perception.
Navigating around the world, we must adaptively allocate attention to our surroundings based on anticipated future stimuli and events. This allocation of spatial attention boosts visuocortical representations at attended locations and locally enhances perception. Indeed, spatial attention has often been analogized to a “spotlight” shining on the item of relevance. Although the neural underpinnings of the locus of this attentional spotlight have been relatively well studied, less is known about the size of the spotlight: to what extent can the attentional field be broadened and narrowed in accordance with behavioral demands? In this study, we developed a paradigm for dynamically estimating the locus and spread of covert spatial attention, inferred from visuocortical activity using fMRI in humans. We measured BOLD activity in response to an annulus while participants (4 female, 4 male) used covert visual attention to determine whether more numbers or letters were present in a cued region of the annulus. Importantly, the width of the cued area was systematically varied, calling for different sizes of the attentional spotlight. The deployment of attention was associated with an increase in BOLD activity in corresponding retinotopic regions of visual areas V1—V3. By modeling the visuocortical attentional modulation, we could reliably recover the cued location, as well as a broadening of the attentional enhancement with wider attentional cues. This modeling approach offers a useful window into the dynamics of attention and spatial uncertainty.Significance StatementThis study explores whether spatial attention can dynamically adapt by shifting and broadening the attentional field. While previous research has focused on the modulation of neural responses at attended locations, less is known about how the size of the attentional field is represented within visual cortex. Using fMRI, we developed a novel paradigm to estimate the spatial tuning of the attentional field and demonstrate that we were able to recover both the location as well as the width of the attentional field. Our findings offer new insights into the neural mechanisms underlying the deployment of spatial attention, contributing to a deeper understanding of how spatial attention supports visual perception.
Visual perception is characterized by known asymmetries in the visual field; human's visual sensitivity is higher along the horizontal than the vertical meridian, and along the lower than the upper vertical meridian. These asymmetries decrease with decreasing eccentricity from the periphery to the center of gaze, suggesting that they may be absent in the 1-deg foveola, the retinal region used to explore scenes at high-resolution. Using high-precision eyetracking and gaze-contingent display, allowing for accurate control over the stimulated foveolar location despite the continuous eye motion at fixation, we investigated fine visual discrimination at different isoeccentric locations across the foveola and parafovea. Although the tested foveolar locations were only 0.3 deg away from the center of gaze, we show that, similar to more eccentric locations, humans are more sensitive to stimuli presented along the horizontal than the vertical meridian. Whereas the magnitude of this asymmetry is reduced in the foveola, the magnitude of the vertical meridian asymmetry is comparable but, interestingly, reversed: objects presented slightly above the center of gaze are more easily discerned than when presented at the same eccentricity below the center of gaze. Therefore, far from being uniform, as often assumed, foveolar vision is characterized by perceptual asymmetries. Further, these asymmetries differ not only in magnitude but also in direction compared to those present just ~4deg away from the center of gaze, resulting in overall different foveal and extrafoveal perceptual fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.