With the growing number of high-resolution satellite images, the traditional image retrieval method has become a bottleneck in the massive application of high-resolution satellite images because of the low degree of automation. However, there are few studies on the automation of satellite image retrieval. This paper presents an automatic high-resolution satellite image accurate retrieval method based on effective coverage (EC) information, which is used to replace the artificial screening stage in traditional satellite image retrieval tasks. In this method, first, we use a convolutional neural network to extract the EC of each satellite image; then, we use an effective coverage grid set (ECGS) to represent the ECs of all satellite images in the library; finally, the satellite image accurate retrieval algorithm is proposed to complete the process of screening images. The performance evaluation of the method is implemented in three regions: Wuhan, Yanling, and Tangjiashan Lake. The large number of experiments shows that our proposed method can automatically retrieve high-resolution satellite images and significantly improve efficiency.