Sub-Saharan Africa, especially its rural areas, faces significant challenges in achieving universal electrification despite its abundant renewable energy resources. The region has the highest population without access to electricity, largely due to economic, infrastructural, and geographical barriers. Energy poverty is a critical issue that hinders sustainable development and exacerbates inequalities. Namibia’s sustainable energy policy aligns with the global Sustainable Development Goals (SDGs), particularly SDG 7, which aims to provide affordable and reliable modern energy access for all. The policy emphasizes mini-grids and decentralized power systems as key strategies for rural electrification. However, despite increased deployment of mini-grids, these solutions often struggle with long-term sustainability. This research explores cost-effective electrification strategies through scenario-based modeling to reduce energy poverty and expand energy access in Namibia’s rural communities, focusing on the existing mini-grids in Tsumkwe and Gam. Using a comprehensive methodology that incorporates HOMER Pro for mini-grid capacity expansion and MS Excel for evaluating main-grid extensions, this study aims to identify the most feasible and economical electrification solutions. The analysis compares electricity supply, total net present cost, and the levelized cost of electricity across these systems. The findings will offer insights into addressing energy poverty in Namibia and provide recommendations for sustainable and scalable rural electrification across Sub-Saharan Africa.