Microorganisms attached on the surfaces of substrate materials in constructed wetland play crucial roles in the removal of organic and inorganic pollutants. However, the impact of substrate material on wetland microbial community structure remains unclear. Moreover, little is known about microbial community in constructed wetland purifying polluted surface water. In this study, Illumina high-throughput sequencing was applied to profile the spatial variation of microbial communities in three pilot-scale surface water constructed wetlands with different substrate materials (sand, zeolite, and gravel). Bacterial community diversity and structure showed remarkable spatial variation in both sand and zeolite wetland systems, but changed slightly in gravel wetland system. Bacterial community was found to be significantly influenced by wetland substrate type. A number of bacterial groups were detected in wetland systems, including Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, Cyanobacteria, Nitrospirae, Planctomycetes, Actinobacteria, Firmicutes, Chlorobi, Spirochaetae, Gemmatimonadetes, Deferribacteres, OP8, WS3, TA06, and OP3, while Proteobacteria (accounting for 29.1-62.3 %), mainly composed of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, showed the dominance and might contribute to the effective reduction of organic pollutants. In addition, Nitrospira-like microorganisms were abundant in surface water constructed wetlands.