Herein, the spatial evolution characteristics of high-level Grade A tourist attractions in the Yangtze River Delta (YRD) urban agglomeration, from 2001 to 2021, are studied by comprehensively applying the nearest neighbor index, kernel density analysis, standard deviation ellipse, and spatial autocorrelation. High-level Grade A tourist attractions are investigated using the random forest model as the driving mechanism of the spatial pattern. Results show that 1) the spatial distribution of high-level Class A tourist attractions in the YRD city cluster has grown to be an agglomeration, and the high-density areas have evolved from “point-like dispersion to regiment-like combination,” gradually forming a B-shaped core density structure. 2) The spatial distribution comprises an overall “northwest–southeast” direction, a small counterclockwise rotation, the distribution of the center of gravity to the southwest migration, and the center of gravity from the territory of Suzhou City to the territory of Huzhou City. 3) The high-level Class A tourist attractions in the YRD city cluster as a whole show a strong positive spatial correlation, and the significantly clustered areas include three types: high-high (H-H), low-low (L-L), and low-high (L-H). 4) The spatial distribution of high, A-level tourist attractions in the YRD city cluster results from the combined action of the natural environment, resource endowment, socioeconomy, and policy background. Each element has a nonlinear and complex influence on the distribution of scenic spots.