Saturation spectroscopy is a powerful method to investigate photophysical parameters of single fluorescent molecules. Nevertheless, the impact of a gradual increase, over a broad range, of the laser excitation on the intramolecular dynamics is not completely understood, particularly concerning their fluorescence emission (the so-called brightness). As we have presented in a previous paper [1], we interpret the evolution of the brightness with the laser power by cascade absorption of two and three photons within a five-level molecular system. This multi-photon consecutive absorption leads us to reconsider the common expression of the saturation curve of fluorescent molecule. Furthermore, this multi-photon absorption process also affects the observation volume of microscope. So, in this paper we propose to interpret the size increase of the confocal observation volume according to simulations based upon two often used expressions of the Point Spread Functions (PSF) in fluorescence microscopy.