Aerosol Optical Depth (AOD) is one of the most important optical properties of aerosols that may affect the energy budgets of our Earth–atmosphere system significantly. Currently, while regional and even global AOD knowledge has been given by various satellites or models, these products are still fraught with uncertainties. In this study, one sophisticated satellite-derived AOD product from MODIS (MODerate resolution Imaging Spectral-radiometer) and two state-of-the-art model-based AOD products from CAMS (Copernicus Atmosphere Monitoring Service) and MERRA-2 (Modern-Era Retrospective analysis for Research and Application Version 2), based on AERONET measurements from 2000–2022, analyzed the spatial distribution characteristics of global AOD. Then using the Mann-Kendall (MK) trend test, the AOD changing trends revealed by the three products were also computed and analyzed. The accuracies of these products and the reliabilities of changing trends derived are discussed and concluded finally. Our study demonstrates that MODIS products have wider applicability, matching best with AERONET globally, while CAMS and MERRA-2 products are only reliable in North America, South America, and Europe. Through comparative analysis of the AOD trends, we found that MODIS, CAMS, and MERRA-2 AOD consistently exhibited decreasing trends in eastern Asia, Europe, and eastern North America. On the other hand, different products showed increasing trends in regions like West Asia, South Asia, and South Africa, suggesting their limited reliability. The reliability assessment shows that 41.45% of the areas have consistent trends among the three products, with approximately 3.2% showing significant and consistent results. When using site trend validation, the proportions of sites with consistent trends are highest at 64.56% and 46.84% respectively. The regions with the best reliability of global trend changes are mainly distributed in North America, Europe, Australia, eastern Asia, and Central South America. This study provides new insights for validating aerosol changes using remote sensing and has the potential to enhance future monitoring and evaluation methods of aerosol products.