Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Because of the high cost of manual surveys, the analysis of spatial change of forest structure at the regional scale faces a difficult challenge. Spaceborne LiDAR can provide global scale sampling and observation. Taking this opportunity, dense natural forest canopy cover (NFCC) observations obtained by combining spaceborne LiDAR data, plot survey, and machine learning algorithm were used as spatial attributes to analyze the spatial effects of NFCC. Specifically, based on ATL08 (Land and Vegetation Height) product generated from Ice, Cloud and land Elevation Satellite-2/Advanced Topographic Laser Altimeter System (ICESat-2/ATLAS) data and 80 measured plots, the NFCC values located at the LiDAR’s footprint locations were predicted by the ML model. Based on the predicted NFCC, the spatial effects of NFCC were analyzed by Moran’s I and semi-variogram. The results showed that (1) the Random Forest (RF) model had the strongest predicted performance among the built ML models (R2=0.75, RMSE=0.09); (2) the NFCC had a positive spatial correlation (Moran’s I = 0.36), that is, the CC of adjacent natural forest footprints had similar trends or values, belonged to the spatial agglomeration distribution; the spatial variation was described by the exponential model (C0 = 0.12×10-2, C = 0.77×10-2, A0 = 10200 m); (3) topographic factors had significant effects on NFCC, among which elevation was the largest, slope was the second, and aspect was the least; (4) the NFCC spatial distribution obtained by SGCS was in great agreement with the footprint NFCC (R2 = 0.59). The predictions generated from the RF model constructed using ATL08 data offer a dependable data source for the spatial effects analysis.
Because of the high cost of manual surveys, the analysis of spatial change of forest structure at the regional scale faces a difficult challenge. Spaceborne LiDAR can provide global scale sampling and observation. Taking this opportunity, dense natural forest canopy cover (NFCC) observations obtained by combining spaceborne LiDAR data, plot survey, and machine learning algorithm were used as spatial attributes to analyze the spatial effects of NFCC. Specifically, based on ATL08 (Land and Vegetation Height) product generated from Ice, Cloud and land Elevation Satellite-2/Advanced Topographic Laser Altimeter System (ICESat-2/ATLAS) data and 80 measured plots, the NFCC values located at the LiDAR’s footprint locations were predicted by the ML model. Based on the predicted NFCC, the spatial effects of NFCC were analyzed by Moran’s I and semi-variogram. The results showed that (1) the Random Forest (RF) model had the strongest predicted performance among the built ML models (R2=0.75, RMSE=0.09); (2) the NFCC had a positive spatial correlation (Moran’s I = 0.36), that is, the CC of adjacent natural forest footprints had similar trends or values, belonged to the spatial agglomeration distribution; the spatial variation was described by the exponential model (C0 = 0.12×10-2, C = 0.77×10-2, A0 = 10200 m); (3) topographic factors had significant effects on NFCC, among which elevation was the largest, slope was the second, and aspect was the least; (4) the NFCC spatial distribution obtained by SGCS was in great agreement with the footprint NFCC (R2 = 0.59). The predictions generated from the RF model constructed using ATL08 data offer a dependable data source for the spatial effects analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.