In many areas of the world, population growth and land development have increased demand for land and other natural resources. Coastal areas are particularly susceptible since they are conducive for marine transportation, energy production, aquaculture, marine tourism and other activities. Anthropogenic activities in the coastal areas have triggered unprecedented land use change, depletion of coastal wetlands, loss of biodiversity, and degradation of other vital ecosystem services. The changes can be particularly drastic for small coastal islands with rich biodiversity. In this study, the influence of human modification on land surface temperature (LST) for the coastal island Hainan in Southern China was investigated. We hypothesize that for this island, footprints of human activities are linked to the variation of land surface temperature, which could indicate environmental degradation. To test this hypothesis, we estimated LST changes between 2000 and 2016 and computed the spatio-temporal correlation between LST and human modification. Specifically, we classified temperature data for the four years 2000, 2006, 2012 and 2016 into 5 temperature zones based on their respective mean and standard deviation values. We then assessed the correlation between each temperature zone and a human modification index computed for the year 2016. Apart from this, we estimated mean, maximum and the standard deviation of annual temperature for each pixel in the 17 years to assess the links with human modification. The results showed that: (1) The mean LST temperature in Hainan Island increased with fluctuations from 2000 to 2016. (2) The moderate temperature zones were dominant in the island during the four years included in this study. (3) A strong positive correlation of 0.72 between human modification index and mean and maximum LST temperature indicated a potential link between human modification and mean and maximum LST temperatures over the 17 years of analysis. (4) The mean value of human modification index in the temperature zones in 2016 showed a progressive rise with 0.24 in the low temperature zone, 0.33 in the secondary moderate, 0.45 in the moderate, 0.54 in the secondary high and 0.61 in the high temperature zones. This work highlighted the potential value of using large and multi-temporal earth observation datasets from cloud platforms to assess the influence of human activities in sensitive ecosystems. The results could contribute to the development of sustainable management and coastal ecosystems conservation plans.