Quality inspection is an essential tool for quality assurance during production. In the microscopic domain, where the manufactured objects have a size of less than 1 mm in at least two dimensions, very often mass production takes place with high demands regarding the failure rate, as micro components generally form the basis for larger assemblies. Especially when it comes to safety-relevant parts, e.g. in the automobile or medical industry, a 100% quality inspection is mandatory. Here, we present a robust and precise metrology method comprised of a holographic contouring system with fast algorithms for geometric evaluation and surface defect detection that paves the way for inspecting cold formed micro parts in less than a second. Using a telecentric lens instead of a standard microscope objective, we compensate scaling effects and wave field curvature, which distort the reconstruction in digital holographic microscopy. To enhance the limited depth of focus of the microscope objective, depth information from different object layers is stitched together to yield 3D data of its complete geometry. The 3D data map is converted into a point cloud and processed by geometry and surface inspection. Thereby, the resulting point cloud data are automatically decomposed into geometric primitives in order to analyze geometric deviations. Additionally, the surface itself is checked for scratches and other defects by the use of convolutional neural networks. The developed machine learning algorithm makes it possible not only to distinguish between good and failed parts but also to show the defect area pixel-wise. The methods are demonstrated by quality inspection of cold formed micro cups. Defects larger than 2 lm laterally and 5 lm axially can be detected.