Abstract. This paper analyses the differences between ERA-Interim and ERA5 surface winds fields relative to ASCAT ocean vector wind observations, after adjustment for the effects of atmospheric stability and density, using stress equivalent winds (U10S), and air-sea relative motion using ocean current velocities. In terms of instantaneous RMS wind speed agreement, ERA5 winds show a 20 % improvement relative to ERA interim, and a performance similar to that of currently operational ECMWF forecasts. ERA5 also performs better than ERA-interim in terms of mean and transient wind errors, wind divergence and wind stress curl biases. Yet, both ERA products show systematic errors in the partition of the wind kinetic energy into zonal and meridional, mean and transient components. ERA winds are characterized by excessive mean zonal winds (westerlies) with defective mean poleward flows at mid-latitudes, and defective mean meridional winds (trades) in the tropics. ERA stress curl is too cyclonic at mid and high latitudes, with implications for Ekman upwelling estimates, and lack detail in the representation of SST gradient effects (along the equatorial cold tongues and WBC jets) and mesoscale convective airflows (along the ITCZ and the warm flanks for the WBC jets). It is conjectured that large-scale mean wind biases in ERA are related to their lack of high frequency (transient wind) variability, which should be promoting residual meridional circulations in the Ferrell and Hadley cells.