2020
DOI: 10.1007/978-3-030-58232-6_3
|View full text |Cite
|
Sign up to set email alerts
|

Spatial Query Performance Analyses on a Big Taxi Trip Origin–Destination Dataset

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 38 publications
0
4
0
2
Order By: Relevance
“…Regarding the querying of data, queries are divided into two categories: selecting all data and k-Nearest Neighbors (kNN) queries [17]. Selecting all data is important for data verification, exploration, and performance benchmarking, allowing researchers to ensure data accuracy, understand its structure, and establish a performance baseline.…”
Section: Applied Methodologymentioning
confidence: 99%
See 1 more Smart Citation
“…Regarding the querying of data, queries are divided into two categories: selecting all data and k-Nearest Neighbors (kNN) queries [17]. Selecting all data is important for data verification, exploration, and performance benchmarking, allowing researchers to ensure data accuracy, understand its structure, and establish a performance baseline.…”
Section: Applied Methodologymentioning
confidence: 99%
“…However, the number of records used is relatively small, which may not fully capture scalability and performance challenges at larger scales. Additional studies [4,16,17] also contributed to the understanding of the performance advantages of MongoDB in specific scenarios and query types. All these studies primarily focused on reading queries and did not extensively investigate writing operations.…”
Section: Theoretical Backgroundmentioning
confidence: 99%
“…NoSQL veritabanları, önceden belirlenmiş bir kayıt yapısı gerektirmeyen, farklı tip ve büyüklüklerde veri içerisinden arama yapılmasına olanak sağlar. Bu veritabanı yapısı, yapısal dağınıklığa izin vermesinin karşılığında daha fazla işlem ve depolama alanı gerektirse de maliyetleri düştüğü ve ölçeklenebilirlik, esneklik ve performans açısından sağladığı avantajlar doğrultusunda büyük veri uygulamalarının hemen hepsinde kullanılmaktadır (Schönberger ve Cukier, 2013;Daşdemir ve Kara, 2019;Anbaroğlu, 2021).…”
Section: Büyük Veri Altyapılarıunclassified
“…Bu gereksinime çözüm olarak geliştirilen NoSQL (Not Only SQL-SQL'den Fazlası) veritabanı yaklaşımları, büyük hacimli ve yapısal olmayan veriyi performanstan feragat etmeden kullanmaya imkân sağlayan sistemlerdir (JRC, 2014;Daşdemir ve Kara, 2019;Aydınoğlu ve ark., 2020). NoSQL veritabanları, büyük veri yönetiminde klasik ilişkisel veritabanı yaklaşımı olan SQL veritabanlarından çok daha iyi performans göstermekte ve büyük veri uygulamalarında özellikle esneklik ve yatay ölçeklenebilirlik avantajları sebebiyle sıklıkla tercih edilmektedirler (Schönberger ve Cukier, 2013;Aydın, 2017;Baralis ve ark., 2017;Aydınoğlu ve ark., 2020;Anbaroğlu, 2021).…”
Section: Introductionunclassified
“…In the third year, students must take the “Geospatial Data Management” course, with a focus on the design and querying of relational databases. A brief introduction to non‐relational database management systems (DBMS, i.e., NoSQL) is also provided due to the emergence of geospatial big data (Anbaroğlu, 2021). Finally, the “Geographic Information Systems” course builds upon the DBMS course and students learn to conduct various spatial analyses.…”
Section: A Collaborative Gis Programming Coursementioning
confidence: 99%